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TÓM TẮT
Mục tiêu: Tổng quan và đánh giá các phần mềm 

in silico theo nhóm chức năng, phục vụ thiết kế, 
sàng lọc và tối ưu hóa ứng viên thuốc.

Phương pháp: Nghiên cứu tổng quan có hệ 
thống các tài liệu khoa học công bố giai đoạn 
2010–2024 trên PubMed, Scopus, ScienceDirect, 
và Google Scholar. Các bài báo được lựa chọn 
theo tiêu chí: mô tả/ứng dụng phần mềm in silico 
trong phát triển thuốc, có thông tin về chức năng, 
ưu điểm và hạn chế. Dữ liệu được trích xuất, tổng 
hợp và phân loại theo chức năng phần mềm trong 
chu trình R&D dược phẩm.

Kết quả: Ghi nhận 6 nhóm phần mềm chính: (1) 
dự đoán đặc tính ADMET; (2) docking phân tử; (3) 
mô phỏng động học phân tử; (4) mô hình QSAR; 
(5) thiết kế hợp chất de novo; và (6) trí tuệ nhân tạo 
ứng dụng trong sàng lọc thuốc. Việc kết hợp các 
phần mềm trong một quy trình thống nhất giúp tăng 
độ chính xác và hiệu quả sàng lọc. 

Kết luận: Các phần mềm in silico giúp rút ngắn 
thời gian, giảm chi phí và nâng cao hiệu quả sàng 
lọc thuốc. Đóng góp mới của nghiên cứu là xây 
dựng hệ thống phân loại rõ ràng, kèm đánh giá so 
sánh theo chức năng và khả năng ứng dụng, hỗ trợ 
lựa chọn công cụ phù hợp cho từng giai đoạn phát 
triển thuốc. Tuy vậy, chuẩn hóa dữ liệu và hiệu chỉnh 
mô hình vẫn là thách thức cần tiếp tục giải quyết.

Từ khóa: in silico, docking, ADMET, mô phỏng, 
trí tuệ nhân tạo, phát triển thuốc.

OVERVIEW AND EVALUATION OF SOFT-
WARE TOOLS USED IN IN SILICO RESEARCH 
FOR NEW DRUG DEVELOPMENT

ABSTRACT
Objective: To review and evaluate in silico 

software tools by functional categories, supporting 

the design, screening, and optimization of potential 
drug candidates.

Methods: A systematic review of scientific literature 
published from 2010 to 2024 was conducted using 
PubMed, Scopus, ScienceDirect, and Google 
Scholar. Articles were selected if they described or 
applied in silico software in drug development and 
provided information on functions, advantages, and 
limitations. Data were extracted, synthesized, and 
classified according to software functions within the 
pharmaceutical R&D pipeline.

Results: Six major categories of software 
were identified: (1) ADMET property prediction; 
(2) molecular docking; (3) molecular dynamics 
simulation; (4) QSAR modeling; (5) de novo 
compound design; and (6) artificial intelligence-
based drug screening. Integrating multiple tools into 
a unified workflow improved accuracy and screening 
efficiency.

Conclusion: In silico software helps shorten 
development time, reduce costs, and enhance drug 
screening efficiency. The novel contribution of this 
study is the development of a clear classification 
system with comparative evaluation by function 
and applicability, providing guidance for selecting 
appropriate tools at each stage of drug development. 
Nevertheless, data standardization and model 
calibration remain challenges that require continued 
attention.

Keywords: in silico, docking, ADMET, simulation, 
artificial intelligence, drug development.

I. ĐẶT VẤN ĐỀ
Sự phát triển mạnh mẽ của khoa học máy tính, 

công nghệ tin sinh học và trí tuệ nhân tạo trong 
những thập niên gần đây đã mở ra một kỷ nguyên 
mới trong nghiên cứu phát triển thuốc. Thay vì 
phụ thuộc hoàn toàn vào các phương pháp truyền 
thống như sàng lọc thực nghiệm hay thử - sai tốn 
kém và mất nhiều thời gian, các công cụ tính toán 
in silico cho phép mô phỏng, dự đoán, và sàng lọc 
hàng nghìn hợp chất tiềm năng chỉ trong thời gian 
ngắn với chi phí thấp hơn đáng kể [1], [2]. Thực tế 
cho thấy, chỉ khoảng 10-12% ứng viên thuốc được 
phát triển thành công, trong khi thời gian trung bình 
để đưa một thuốc mới ra thị trường có thể kéo dài 
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10–15 năm với chi phí lên tới hàng tỷ USD. Nhờ tích 
hợp in silico vào quy trình R&D, nhiều nghiên cứu ghi 
nhận chi phí có thể giảm 40-60% và thời gian phát 
hiện - tối ưu hóa hợp chất được rút ngắn rõ rệt [3].

Các công cụ in silico hiện đã được ứng dụng rộng 
rãi trong hầu hết các giai đoạn phát triển thuốc, 
bao gồm thiết kế cấu trúc phân tử, dự đoán đặc 
tính ADMET, docking phân tử, xây dựng mô hình 
QSAR, mô phỏng động lực học phân tử, cũng như 
ứng dụng trí tuệ nhân tạo trong sàng lọc và tối ưu 
hóa hợp chất. Tuy nhiên, sự đa dạng và số lượng 
lớn phần mềm hiện có - với khác biệt về thuật toán, 
độ chính xác, chi phí và phạm vi áp dụng - đang 
đặt ra thách thức lớn cho các nhà nghiên cứu trong 
việc lựa chọn công cụ phù hợp cho từng mục tiêu 
cụ thể. Đáng chú ý, các báo cáo tổng hợp trong 
nước hiện còn rời rạc, thiếu những tổng quan có 
hệ thống giúp so sánh, phân loại và đánh giá một 
cách toàn diện các phần mềm theo chức năng sử 
dụng. Điều này dẫn đến nguy cơ lựa chọn công cụ 
chưa tối ưu, lặp lại thử nghiệm hoặc khai thác chưa 
đầy đủ nguồn lực tính toán.

Trong bối cảnh các phương pháp in silico, đặc 
biệt là trí tuệ nhân tạo và mô phỏng quy mô lớn, 
phát triển rất nhanh, việc cập nhật và hệ thống 
hóa thông tin về các phần mềm phục vụ phát triển 
thuốc trở nên cấp thiết. Nghiên cứu này nhằm tổng 
hợp, phân loại và đánh giá các phần mềm in silico 
được sử dụng phổ biến trong giai đoạn 2010-2024, 
ở cả trong nước và trên thế giới. Trên cơ sở phân 
tích các tài liệu khoa học đã công bố, nghiên cứu 
làm rõ xu hướng phát triển, ưu điểm, hạn chế và 
tiềm năng ứng dụng của từng nhóm công cụ, đồng 
thời đề xuất định hướng lựa chọn và tích hợp phần 
mềm phù hợp trong thực hành nghiên cứu. Mục 
tiêu cuối cùng là góp phần tối ưu hóa quy trình thiết 
kế và sàng lọc thuốc, nâng cao hiệu quả ứng dụng 
công nghệ in silico trong nghiên cứu dược học.

II. ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
2.1. Đối tượng, địa điểm và thời gian nghiên cứu
Đối tượng nghiên cứu: Các phần mềm, cơ sở dữ 

liệu và công cụ tính toán được sử dụng trong thiết 
kế và phát triển thuốc in silico.

Tiêu chuẩn lựa chọn: Bao gồm các bài báo khoa 
học mô tả, đánh giá hoặc ứng dụng phần mềm in 
silico trong các giai đoạn phát triển thuốc, được 
công bố giai đoạn 2010-2024, có trình bày rõ chức 
năng, phạm vi ứng dụng và đặc tính kỹ thuật.

Tiêu chuẩn loại trừ: Loại các bài viết không có 
toàn văn, thiếu thông tin về phần mềm, không phải 
bài có phản biện khoa học, hoặc chỉ mang tính lý 
thuyết mà không có ứng dụng/đánh giá cụ thể.

Địa điểm nghiên cứu: Học viện Quân y.
Thời gian thực hiện: Từ tháng 01 năm 2024 

đến tháng 09 năm 2025.
2.2. Phương pháp nghiên cứu
Thiết kế nghiên cứu: Tổng quan có hệ 

thống (systematic review), tuân thủ khuyến cáo 
PRISMA 2020.

Cỡ mẫu và chọn mẫu: Không áp dụng chọn 
mẫu định lượng; các tài liệu được lựa chọn có chủ 
đích theo tiêu chí xác định.

Nguồn dữ liệu và truy vấn tìm kiếm: Tài liệu 
được tìm kiếm trên PubMed, Scopus, ScienceDirect 
và Google Scholar. Chuỗi truy vấn được xây dựng 
dựa trên tổ hợp từ khóa MeSH/keywords: 

(“in silico drug design” OR “computer-aided 
drug design”)

AND (“software” OR “tool” OR “platform”)
AND (“docking” OR “QSAR” OR “molecular 

dynamics” OR “ADMET” OR “AI”)
AND (Publication years: 2010–2024). 
Bộ lọc áp dụng: bài báo có phản biện, tiếng Anh/

Việt, lĩnh vực dược học - sinh học - tin sinh học. Dữ 
liệu được tìm kiếm đến ngày 15/10/2024; các bước 
sàng lọc và phân tích được thực hiện đến 09/2025. 

Quy trình sàng lọc tài liệu
Tài liệu thu được được xử lý theo ba bước: 1. 

Loại trùng lặp bằng EndNote/Mendeley; 2. Sàng 
lọc tiêu đề và tóm tắt theo tiêu chí đề ra; 3.Đọc toàn 
văn, loại bài không đáp ứng nội dung hoặc thiếu 
dữ liệu. Qua quá trình tìm kiếm và sàng lọc tài liệu 
(842 bài ban đầu, còn 693 bài sau loại trùng lặp, 
262 bài được đọc toàn văn và cuối cùng lựa chọn 
112 bài - gồm 84 bài đánh giá phần mềm chính và 
28 bài bổ trợ), tổng số bài đủ tiêu chuẩn được đưa 
vào phân tích là 112.

Trích xuất và tổng hợp dữ liệu
Dữ liệu từ mỗi bài được trích xuất theo mẫu 

chuẩn gồm: tên phần mềm/công cụ; mục đích sử 
dụng; thuật toán/cơ chế; ưu điểm – hạn chế; lĩnh 
vực ứng dụng; minh chứng hiệu quả (nếu có).

Sau đó, các công cụ được phân loại theo chức 
năng: thiết kế cấu trúc, docking, mô phỏng MD, 
QSAR, dự đoán ADMET, AI và thiết kế de novo.

Đánh giá chất lượng & kiểm soát thiên lệch
Mỗi bài được đánh giá độc lập bởi hai nhà nghiên 

cứu, theo các tiêu chí: tính phù hợp chủ đề; độ rõ 
ràng phương pháp; tính minh bạch phần mềm và 
dữ liệu; giá trị ứng dụng.

Các bất đồng được thảo luận và thống nhất bởi 
người thứ ba. Phân tích tổng hợp mang tính định 
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tính, nhằm nhận diện xu hướng, ưu/nhược điểm và 
khoảng trống nghiên cứu.

2.3. Đạo đức nghiên cứu: Nghiên cứu là bài 
tổng quan sử dụng hoàn toàn dữ liệu công khai 
từ các nguồn khoa học hợp pháp, không can thiệp 

vào người hay động vật thí nghiệm. Toàn bộ quá 
trình thực hiện tuân thủ quy định về đạo đức trong 
nghiên cứu khoa học, đảm bảo tính minh bạch, 
khách quan, trung thực trong thu thập, trích dẫn và 
phân tích dữ liệu.

III. KẾT QUẢ NGHIÊN CỨU
3.1. Khái niệm, đặc điểm và phạm vi ứng dụng của nghiên cứu in silico
Nghiên cứu thuốc in silico (hay Computer-Aided Drug Design/Discovery – CADD) là lĩnh vực ứng dụng 

các mô hình tính toán, thuật toán và phần mềm chuyên dụng để mô phỏng, dự đoán và tối ưu hóa tương 
tác thuốc-đích sinh học, hỗ trợ toàn bộ quá trình phát hiện và phát triển thuốc mới [4]. Nhờ khả năng 
khảo sát không gian hóa học lớn và sàng lọc đồng thời hàng nghìn hợp chất, in silico giúp giảm đáng kể 
số lượng thí nghiệm tiền lâm sàng cần thiết. Một số phân tích kinh tế - kỹ thuật cho thấy việc tích hợp 
các bước sàng lọc ảo, QSAR và dự đoán ADMET có thể loại bỏ sớm 30-50% hợp chất không phù hợp 
trước khi tiến hành thí nghiệm in vitro, qua đó rút ngắn thời gian nghiên cứu từ giai đoạn phát hiện đến 
tối ưu hóa thuốc (lead optimization) khoảng 1-3 năm trong nhiều dự án phát triển thuốc. Trong chu trình 
phát triển thuốc, các công cụ in silico được ứng dụng tại nhiều điểm nút quan trọng: (i) sàng lọc ảo để 
xác định các hợp chất có khả năng gắn kết tốt; (ii) mô phỏng động lực học phân tử nhằm đánh giá độ ổn 
định phức hợp; (iii) mô hình QSAR để dự đoán hoạt tính sinh học dựa trên cấu trúc; (iv) dự đoán ADMET 
để phát hiện sớm nguy cơ độc tính hoặc hấp thu kém [4], [5]. Nhờ sự phát triển của thuật toán và dữ liệu 
sinh học - tin sinh học quy mô lớn, in silico ngày càng đóng vai trò trung tâm, hướng tới mục tiêu thiết kế 
thuốc chính xác và cá thể hóa.

3.2. Các hướng tiếp cận chính trong thiết kế và phát triển thuốc in silico
Thiết kế thuốc in silico hiện tập trung vào bốn hướng tiếp cận chính. (1) Thiết kế dựa trên cấu trúc 

(SBDD): dựa trên cấu trúc 3D của protein đích để dự đoán tư thế gắn kết và năng lượng liên kết của 
ligand, hỗ trợ phát hiện hợp chất dẫn với độ chọn lọc cao [6]. (2) Thiết kế dựa trên phối tử (LBDD): được 
áp dụng khi cấu trúc đích chưa rõ; sử dụng tương đồng cấu trúc, QSAR và phân lớp học máy để dự đoán 
hợp chất mới có hoạt tính tương tự phối tử đã biết. (3) Các công cụ mô tả đặc tính dược lý: bao gồm 
pharmacophore modeling, mô phỏng động lực học phân tử và các mô hình dự đoán hoạt tính, giúp làm 
rõ đặc điểm không gian và tính ổn định của phức hợp ligand–protein. (4) Trí tuệ nhân tạo (AI) và học máy 
(ML): ngày càng đóng vai trò then chốt. Các mô hình deep learning (graph neural networks, transformer-
based) hỗ trợ dự đoán cấu trúc protein (AlphaFold), sàng lọc hợp chất (DeepChem) và thiết kế thuốc de 
novo (ChemBERTa, REINVENT) [5], [7]. Một số nghiên cứu gần đây ghi nhận AI có thể tăng độ chính xác 
dự đoán hoạt tính 10-20% so với mô hình truyền thống trong một số bộ dữ liệu chuẩn, đồng thời giảm 
đáng kể số thí nghiệm cần xác nhận [5], [7].

3.3. Phân loại các nhóm phần mềm và công cụ được sử dụng trong nghiên cứu phát triển thuốc
Tổng hợp 112 tài liệu cho thấy các phần mềm in silico có thể chia thành sáu nhóm chức năng chính.
3.3.1. Phần mềm thiết kế cấu trúc phân tử và tối ưu hóa hợp chất
Đây là nhóm phần mềm được sử dụng ở giai đoạn đầu của quá trình thiết kế thuốc, giúp xây dựng, hiển 

thị và tối ưu hóa cấu trúc phân tử ba chiều (3D). ChemDraw và Avogadro hỗ trợ vẽ cấu trúc 2D, chuyển 
đổi sang mô hình 3D và tối ưu hình học; OpenBabel giúp chuyển đổi định dạng tệp và tối ưu cấu trúc tự 
động; trong khi Gaussian và GaussView thực hiện phân tích hóa lượng tử, tính toán năng lượng và đặc 
tính điện tử [6]. Nhóm công cụ này đóng vai trò cung cấp dữ liệu đầu vào chuẩn hóa; nhiều nghiên cứu 
ghi nhận rằng việc tối ưu hình học trước docking giúp cải thiện điểm số gắn kết từ 5–15% so với cấu trúc 
chưa chuẩn hóa [4], [6].

3.3.2. Phần mềm sàng lọc ảo (Virtual Screening) và Docking phân tử
Sàng lọc ảo và docking là bước quan trọng nhất trong thiết kế thuốc dựa trên cấu trúc (SBDD), giúp 

nhanh chóng xác định các hợp chất có khả năng gắn kết mạnh và chọn lọc với đích sinh học. Các phần 
mềm như AutoDock và AutoDock Vina (mã nguồn mở) hỗ trợ dự đoán vị trí và ái lực liên kết ligand–
protein, trong khi Glide và GOLD (thương mại) sử dụng thuật toán tiên tiến để xác định tư thế gắn kết tối 
ưu. SwissDock và DOCK là các nền tảng trực tuyến thuận tiện, cho phép sàng lọc quy mô lớn mà không 
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cần cấu hình máy tính phức tạp [4], [6]. Nhờ đó, nhóm công cụ này giúp rút ngắn thời gian phát hiện hợp 
chất dẫn và giảm số thí nghiệm in vitro, in vivo. Một số nghiên cứu so sánh cho thấy phần mềm thương 
mại (Glide, GOLD) thường cho hệ số tương quan tốt hơn (r = 0,55–0,70) so với Vina (r = 0,40–0,55), 
nhưng chi phí cao và cần giấy phép sử dụng [4], [6].

3.3.3. Phần mềm mô phỏng động lực học phân tử (Molecular Dynamics - MD)
Các phần mềm mô phỏng động lực học phân tử (MD) cho phép theo dõi sự chuyển động và độ ổn 

định của phức hợp ligand–protein theo thời gian, giúp làm rõ cơ chế gắn kết trong điều kiện gần với 
môi trường sinh lý. Các công cụ phổ biến gồm GROMACS (mã nguồn mở, hiệu năng cao), AMBER và 
CHARMM (cung cấp bộ trường lực chính xác cho protein, acid nucleic và phân tử nhỏ), cùng NAMD 
(tối ưu cho tính toán song song) [5], [6]. Nhiều nghiên cứu cho thấy MD giúp giảm tỷ lệ “dương giả” sau 
docking nhờ xem xét thêm tác động của dung môi và chuyển động phân tử [4].

3.3.4. Phần mềm dự đoán dược động học và độc tính (ADMET Prediction)
Dự đoán ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) là bước quan trọng trong 

sàng lọc ảo, giúp loại trừ sớm các hợp chất có đặc tính dược động học kém hoặc độc tính cao. Các công 
cụ phổ biến như SwissADME và pkCSM dựa trên mô hình học máy cho phép dự đoán khả năng hấp thu, 
phân bố và chuyển hóa; ADMETlab mở rộng thêm dự đoán về độc tính, độ ổn định hóa học và tương 
tác protein huyết tương; trong khi Toxtree tập trung phân tích cảnh báo độc tính và cơ chế gây độc dựa 
trên cấu trúc hóa học [4], [5]. Trong một số nghiên cứu, việc áp dụng bộ công cụ ADMET trước khi thử 
nghiệm in vitro đã giúp giảm 25-35% số hợp chất cần kiểm tra, qua đó tiết kiệm chi phí đáng kể [4], [8].

3.3.5. Phần mềm phân tích và khai thác dữ liệu sinh học - tin sinh học
Cơ sở dữ liệu tin sinh học là nguồn đầu vào quan trọng cho mô hình hóa và huấn luyện thuật toán trong 

thiết kế thuốc. PubChem, ChEMBL, BindingDB cung cấp dữ liệu khổng lồ về cấu trúc hóa học, hoạt tính 
sinh học và tương tác ligand-protein, trong khi UniProt chứa thông tin toàn diện về protein (chức năng, 
chuỗi amino acid, vị trí hoạt động) và STRING hỗ trợ phân tích mạng lưới tương tác protein-protein, giúp 
xác định đích tác dụng tiềm năng [6]. Việc tích hợp các cơ sở dữ liệu này không chỉ nâng cao độ chính 
xác và tính toàn diện của mô hình in silico mà còn tạo nền tảng dữ liệu huấn luyện thiết yếu cho các thuật 
toán học máy và trí tuệ nhân tạo trong phát hiện và phát triển thuốc [5].

3.3.6. Phần mềm ứng dụng trí tuệ nhân tạo trong thiết kế thuốc
Sự phát triển mạnh mẽ của trí tuệ nhân tạo (AI) và học máy (Machine Learning – ML) đang tạo nên 

bước chuyển lớn trong lĩnh vực phát hiện và phát triển thuốc in silico. Các nền tảng như DeepChem và 
Chemprop cho phép xây dựng mô hình học sâu để dự đoán hoạt tính sinh học, đặc tính ADMET và tối 
ưu cấu trúc hợp chất [5]. AlphaFold của DeepMind đánh dấu bước ngoặt trong dự đoán cấu trúc protein 
3D với độ chính xác gần tương đương tinh thể học [7], trong khi các mô hình sinh tổng hợp như MolGPT, 
REINVENT có khả năng thiết kế de novo hợp chất mới, rút ngắn đáng kể chu trình khám phá thuốc. Sự 
tích hợp giữa AI với các mô hình docking, động lực học phân tử (MD) và QSAR đang hướng tới hệ thống 
tự động hóa toàn diện, giúp nâng cao độ chính xác, hiệu quả và tốc độ trong nghiên cứu dược học hiện 
đại. Nhiều dự án báo cáo thời gian sàng lọc hàng triệu hợp chất có thể rút từ vài tháng xuống còn vài 
ngày nhờ tích hợp AI với các pipeline docking và QSAR tự động [4], [5].

Bảng 1. Phân loại và chức năng các nhóm phần mềm trong phát triển thuốc in silico

Nhóm phần mềm Chức năng chính Một số phần mềm 
tiêu biểu

Giai đoạn ứng 
dụng trong phát 

triển thuốc

Thiết kế cấu trúc 
phân tử và tối ưu 

hóa hợp chất

Xây dựng, hiển thị và tối ưu hóa cấu 
trúc 3D của phân tử; tính toán năng 
lượng, phân bố điện tử và đặc tính hóa 
lượng tử; tạo dữ liệu đầu vào cho mô 

phỏng và sàng lọc.

ChemDraw, Avogadro, 
OpenBabel, Gaussian, 

GaussView

Thiết kế ban đầu 
hợp chất (lead 

design)

Sàng lọc ảo (Virtual 
Screening) và 

Docking phân tử

Dự đoán vị trí, tư thế và ái lực liên kết 
ligand–protein; xác định hợp chất có 
khả năng gắn kết mạnh và chọn lọc 

cao với đích sinh học.

AutoDock, AutoDock 
Vina, GOLD, Glide, 

SwissDock, DOCK

Phát hiện hợp 
chất dẫn (lead 

identification)
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Nhóm phần mềm Chức năng chính Một số phần mềm 
tiêu biểu

Giai đoạn ứng 
dụng trong phát 

triển thuốc
Mô phỏng động 
lực học phân 
tử (Molecular 

Dynamics – MD)

Mô phỏng sự chuyển động, ổn định và 
biến đổi cấu trúc của phức hợp ligand–
protein; đánh giá độ bền và tính linh 

động của tương tác.

GROMACS, AMBER, 
CHARMM, NAMD

Tối ưu hóa tương 
tác thuốc–đích 
(lead optimization)

Dự đoán dược động 
học và độc tính 
(ADMET Prediction)

Dự đoán hấp thu, phân bố, chuyển 
hóa, thải trừ và độc tính; loại trừ sớm 
các hợp chất có đặc tính không phù 

hợp hoặc độc tính cao.

SwissADME, pkCSM, 
ADMETlab, Toxtree

Sàng lọc và đánh 
giá an toàn tiền lâm 

sàng

Phân tích và khai 
thác dữ liệu sinh 
học – tin sinh học

Cung cấp và quản lý dữ liệu hóa học 
– sinh học; hỗ trợ phân tích tương 
tác protein–protein, ligand–protein và 

huấn luyện mô hình AI/ML.

PubChem, ChEMBL, 
BindingDB, UniProt, 

STRING

Xác định đích sinh 
học và xây dựng 
mô hình dự đoán

Ứng dụng trí tuệ 
nhân tạo trong thiết 

kế thuốc

Xây dựng mô hình học sâu để dự đoán 
hoạt tính, ADMET, thiết kế de novo hợp 
chất và tự động hóa quy trình nghiên cứu.

DeepChem, 
Chemprop, AlphaFold, 
MolGPT, REINVENT

Tối ưu hóa hợp 
chất và thiết kế 
thuốc mới (AI-
driven drug design)

(Nguồn: Tổng hợp của nhóm nghiên cứu từ 112 tài liệu công bố giai đoạn 2010-2024).
3.4. Tiêu chí đánh giá phần mềm
Việc lựa chọn phần mềm in silico phù hợp có vai trò quyết định đối với độ chính xác và hiệu quả của 

nghiên cứu, dựa trên bốn tiêu chí chính [4], [6]. Thứ nhất, tính dễ sử dụng và yêu cầu kỹ thuật, bao gồm 
giao diện trực quan, hỗ trợ đa nền tảng và hướng dẫn chi tiết, giúp thao tác thuận tiện ngay cả với người 
không chuyên lập trình. Thứ hai, độ chính xác và độ tin cậy của mô hình, phụ thuộc vào thuật toán tính 
toán và chất lượng dữ liệu đầu vào; các phần mềm thương mại như Glide hay GOLD có độ chính xác 
cao, trong khi AutoDock Vina được đánh giá tốt nhờ khả năng tái lập kết quả [4]. Thứ ba, tính sẵn có và 
chi phí, khi các phần mềm mã nguồn mở như GROMACS, AutoDock, SwissADME dễ tiếp cận hơn so 
với các công cụ thương mại như Schrödinger Suite hay Discovery Studio [5]. Cuối cùng, khả năng tương 
thích và tích hợp giữa các công cụ (định dạng pdbqt, mol2, sdf) là yếu tố then chốt để xây dựng pipeline 
thống nhất; các nền tảng tích hợp học máy và cơ sở dữ liệu sinh học hiện được ưu tiên trong dược học 
tính toán hiện đại [7]. Ở nhiều nghiên cứu so sánh, phần mềm mã nguồn mở (như Vina, GROMACS, 
SwissADME) có lợi thế chi phí, trong khi một số phần mềm thương mại ghi nhận độ chính xác cao hơn 
trong một số bài toán đặc thù [6], [7].

3.5. So sánh ưu và nhược điểm giữa các nhóm phần mềm
Mỗi nhóm phần mềm in silico đều có ưu thế và hạn chế riêng, phụ thuộc vào mục tiêu nghiên cứu và 

năng lực tính toán sẵn có. Nhóm thiết kế cấu trúc và tối ưu hóa hợp chất (ChemDraw, Avogadro, Gaussian) 
có ưu điểm dễ sử dụng, phù hợp cho việc tạo mô hình ban đầu nhưng hạn chế khi mô phỏng các tương 
tác phân tử phức tạp [6]. Nhóm sàng lọc ảo và docking phân tử (AutoDock, Glide, GOLD) có khả năng xử 
lý hàng nghìn hợp chất, song độ chính xác phụ thuộc vào thuật toán và điều kiện docking [4]. Nhóm mô 
phỏng động lực học phân tử (MD) (GROMACS, AMBER, NAMD) đạt độ chính xác cao, mô phỏng được 
tương tác ở cấp độ nguyên tử, nhưng yêu cầu phần cứng mạnh và thời gian tính toán dài [5]. Nhóm dự 
đoán ADMET (SwissADME, pkCSM, ADMETlab) có ưu điểm nhanh, dễ sử dụng, phù hợp cho sàng lọc 
ban đầu, nhưng còn hạn chế về độ chính xác do phụ thuộc vào mô hình học máy [8]. Trong khi đó, nhóm 
thiết kế dựa trên trí tuệ nhân tạo (AI) (DeepChem, Chemprop, AlphaFold, MolGPT) thể hiện tiềm năng vượt 
trội trong dự đoán cấu trúc và thiết kế hợp chất de novo, song còn đối mặt với thách thức về tính minh bạch 
của thuật toán và nhu cầu dữ liệu huấn luyện lớn [5], [7]. Sự kết hợp nhiều công cụ đang chứng minh hiệu 
quả vượt trội; ví dụ, chuỗi tích hợp AutoDock Vina - GROMACS - SwissADME đã giúp xác định hợp chất 
kháng SARS-CoV-2 tiềm năng ngay trong giai đoạn sàng lọc ban đầu [6]. Do đó, xu hướng sử dụng chuỗi 
công cụ tích hợp (integrated pipeline) thay vì phần mềm đơn lẻ đang trở thành hướng tiếp cận chuẩn trong 
dược lý tính toán hiện nay.
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Bảng 2. So sánh các nhóm phần mềm in silico theo mục tiêu và đặc điểm kỹ thuật

Nhóm phần mềm Độ chính xác Chi phí Mức độ 
phổ biến

Khả năng 
tích hợp

Thiết kế cấu trúc phân tử 
và tối ưu hóa hợp chất 
(ChemDraw, Avogadro, 

OpenBabel, Gaussian)

Trung bình - Cao 
(phụ thuộc độ phức 
tạp của mô hình 

lượng tử)

Thấp - Trung bình 
(đa số mã nguồn mở, 
Gaussian thương 

mại)

Rộng rãi 
trong giới 

học thuật
Tốt 

Sàng lọc ảo và docking phân 
tử (AutoDock, Vina, GOLD, 

Glide, SwissDock)

Cao (Glide, GOLD) 
/ Trung bình (Vina, 

SwissDock)

Thấp (mã nguồn mở); 
Cao (thương mại)

Rất phổ biến Rất tốt 

Mô phỏng động lực học 
phân tử (MD) (GROMACS, 
AMBER, NAMD, CHARMM)

Rất cao, gần thực 
nghiệm

Trung bình – Cao 
(yêu cầu phần cứng 

mạnh)

Phổ biến 
chuyên sâu

Tốt 

Dự đoán dược động học 
và độc tính (ADMET) 
(SwissADME, pkCSM, 

ADMETlab, Toxtree)

Trung bình (phụ 
thuộc vào mô hình 

ML)

Miễn phí (đa số trực 
tuyến)

Rất phổ biến 
trong sàng 
lọc ban đầu

Tốt 

Phân tích dữ liệu sinh học 
- tin sinh học (PubChem, 
ChEMBL, BindingDB, 

UniProt, STRING)

Cao (dữ liệu được 
xác thực)

Miễn phí
Rộng rãi, là 
nền tảng dữ 
liệu bắt buộc

Rất tốt 

Ứng dụng trí tuệ nhân 
tạo trong thiết kế thuốc 
(DeepChem, Chemprop, 

AlphaFold, MolGPT)

Cao - Rất cao (phụ 
thuộc dữ liệu huấn 

luyện)

Thấp – Trung bình 
(đa số mã nguồn mở)

Tăng nhanh, 
xu hướng 

toàn cầu

Rất tốt 

(Nguồn: Tổng hợp của nhóm nghiên cứu từ 112 tài liệu công bố giai đoạn 2010-2024).
IV. BÀN LUẬN
4.1. Hạn chế và thách thức
Mặc dù công nghệ in silico mang lại nhiều lợi ích 

trong nghiên cứu và phát triển thuốc, song vẫn tồn 
tại những thách thức cần khắc phục. Trước hết, sự 
khác biệt giữa mô hình tính toán và thực nghiệm 
sinh học là vấn đề cốt lõi, do các mô hình dựa trên 
giả định và dữ liệu mô phỏng nên có thể sai lệch so 
với kết quả in vitro hoặc in vivo [4]. Bên cạnh đó, 
yêu cầu cao về năng lực tính toán và chuyên môn 
tin sinh học là rào cản lớn, nhất là ở các nước đang 
phát triển, khi việc vận hành mô phỏng hoặc mô 
hình AI đòi hỏi phần cứng mạnh và nhân lực được 
đào tạo chuyên sâu [5]. Ngoài ra, chi phí bản quyền 
và hạn chế truy cập dữ liệu vẫn là trở ngại, vì nhiều 
phần mềm thương mại có giá cao và dữ liệu huấn 
luyện AI thường thuộc sở hữu tư nhân, làm giảm 
tính minh bạch khoa học [7]. Tại Việt Nam, việc 
thiếu hạ tầng tính toán mạnh và đào tạo chuyên sâu 
là yếu tố cần được ưu tiên để mở rộng ứng dụng 
thực tiễn của công nghệ in silico trong tương lai.

4.2. Xu hướng và triển vọng tương lai
Trong những năm gần đây, trí tuệ nhân tạo (AI), học 

sâu và điện toán đám mây đã trở thành xu hướng chủ 

đạo trong nghiên cứu phát hiện và phát triển thuốc. 
AI giúp tăng tốc sàng lọc, tối ưu thiết kế de novo 
và dự báo đáp ứng lâm sàng sớm, với bước ngoặt 
quan trọng từ AlphaFold 3 (2024) mở rộng dự đoán 
tương tác protein-ligand-acid nucleic-ion, tạo đột phá 
cho thiết kế thuốc dựa trên cấu trúc (SBDD) [9]. Bên 
cạnh đó, điện toán đám mây và nền tảng dữ liệu mở 
(như Open Targets, Terra, Seven Bridges) cho phép 
tích hợp và xử lý dữ liệu quy mô lớn, hỗ trợ xác định 
đích tác dụng tiềm năng theo nguyên tắc FAIR [10], 
[11]. Xu hướng tích hợp dữ liệu đa tầng (multi-omics) 
giúp làm rõ cơ chế bệnh học và phản ứng thuốc, 
mở đường cho y học cá thể hóa, trong đó liệu pháp 
được tối ưu theo đặc điểm di truyền từng bệnh nhân 
[12-15]. Đồng thời, mô hình hợp tác học thuật - công 
nghiệp và học liên kết (federated learning) đang góp 
phần nâng cao độ chính xác, bảo mật dữ liệu và khả 
năng ứng dụng thực tiễn của các mô hình AI trong 
dược học tính toán [16].

V. KẾT LUẬN
Các phần mềm in silico hiện đóng vai trò trung 

tâm trong phát triển thuốc, cho phép mô phỏng, dự 
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đoán và tối ưu hóa quá trình phát hiện thuốc ở cấp 
độ phân tử mà không phải thực hiện quá nhiều thí 
nghiệm thực nghiệm. Hệ thống công cụ này rất đa 
dạng, gồm: thiết kế và tối ưu cấu trúc (ChemDraw, 
Avogadro, Gaussian), sàng lọc ảo và docking 
(AutoDock, Glide, GOLD), mô phỏng động lực học 
phân tử (GROMACS, AMBER), dự đoán ADMET 
(SwissADME, pkCSM, ADMETlab), khai thác dữ 
liệu sinh học (PubChem, ChEMBL, UniProt) và 
các nền tảng AI (DeepChem, AlphaFold, MolGPT). 
Phần mềm mã nguồn mở có ưu thế chi phí thấp 
và dễ tiếp cận, trong khi phần mềm thương mại 
thường có độ chính xác và khả năng tích hợp cao 
hơn. Việc kết hợp nhiều công cụ trong một pipeline 
giúp nâng cao hiệu quả từ sàng lọc, dự đoán đến 
mô phỏng tương tác phân tử. Tuy nhiên, các kết 
quả in silico vẫn cần được kiểm chứng bằng thí 
nghiệm in vitro và in vivo để đảm bảo tính tin cậy. 
Tại Việt Nam, việc ứng dụng công nghệ này là xu 
hướng tất yếu; cần đầu tư hạ tầng tính toán, dữ 
liệu sinh học và đào tạo nhân lực liên ngành nhằm 
xây dựng nền tảng phát triển thuốc hiện đại, an 
toàn và hiệu quả.
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