SURVEY OF NECK RANGE OF MOTION USING SYSTEM WITH SENSOR-INTEGRATED BASED ON PHOTOMETRY METHOD AND ZERO METHOD ON HEALTHY VOLUNTEERS

ABSTRACT

Phan Nhat Khanh¹*, Nguyen Thi Bay², Pham Le An³, Che Quang Cong⁴, Le Tan Kha³, Nguyen Huu Duc Minh^{1,3}**

Objective: The study aimed to evaluate the accuracy and reliability and of the system with sensor-integrated based on photometry method (PMD-HAM system) compared with the Zero method using a goniometry when measuring the range of motion of the neck joints of healthy volunteers at the Ho Chi Minh City Hospital for Rehabilitation and Occupational Diseases.

Method: Conducted over four months at the Hospital for Rehabilitation – Occupational Diseases, the research included 50 healthy volunteers (24 males, 26 females) with strict inclusion and exclusion criteria. Both conventional goniometry and the system with sensor-integrated based on photometry method were utilized to assess cervical range of motion (ROM) across six movements: flexion, extension, right lateral flexion, left lateral flexion, right rotation, and left rotation.

Results: Results indicated no statistically significant differences between the measurements obtained using both methods (p > 0.05). These findings suggest that the system with sensorintegrated based on photometry method is a reliable and valid alternative to traditional measurement techniques for assessing cervical ROM.

Conclusion: The implementation of this innovative method may enhance routine clinical assessments, promote accurate data collection in diverse settings. Future research will involve a more varied participant demographic and refined measurement apparatus to further validate the method's efficacy.

- 1. Hospital for Rehabilitation Occupational Diseases
- 2 School of Medicine, Vietnam National University Ho Chi Minh City
- 3 University of Medicine and Pharmacy at Ho Chi Minh City
- 4 Ho Chi Minh City University of Technology *Corresponding author: Nguyen Huu Duc Minh

Email: nhdminh@ump.edu.vn Ngày nhận bài: 29/9/2024 Ngày phản biện: 10/12/2024 Ngày duyệt bài: 25/12/2024

Keywords: Cervical range of motion, photogrammetry, goniometry, the system with sensor-integrated based on photometry method, PMD-HAM system, healthy volunteeers.

I. INTRODUCTION

Cervical radiculopathy (CR) is a group of clinical symptoms associated with cervical spine pathologies that are accompanied by dysfunction of the cervical roots, spinal nerves and/or cervical spine. Common symptoms include pain in the neck, shoulder, and arm, accompanied by some sensory disorders and/or reduced range of motion in the cervical area. CR with cervical pain, shoulder pain in the population commonly has complications of disability and loss of working ability, especially patients in low-income countries. This is an economic and medical burden for the entire world in general, individual patients and families, communities, and medical forces [1].

The range of motion method (ROM) has been proved to be able to classify initially patients at risk of injury after sudden trauma [2]. In Vietnam, the diagnosis and evaluation of the effectiveness of the treatment is ROM manual method (traditional goniometer). Although the availability has been proved, these instruments require the assistance of skilled operators therefore, the device is cumbersome and requires manual reading.

Photogrammetry is another noninvasive technique and has been widely applied to in cervical measurement [3-6]. However, the preparatory work of photogrammetry is relatively tedious due to the placement of cameras and body markers. Considering the advantages of the photogrammetry we developed an innovative technique for the measurement of Cervical ROM based on it. This approach is reliable, automatic and convenient for people with or without relevant medical knowledge. As a result, this study is intended to evaluate the accuracy and reliability of this new technique for measuring cervical ROM compared to traditional goniometry.

Objective:

^{*} These authors have contributed equally to this work and share first authorship.

- 1. Compare the results of measuring the range of neck motion (flexion extension, right lateral flexion left lateral flexion, right rotation left rotation) using a body ROM measuring device.
- 2. Compare the results of measuring the range of neck motion (flexion extension, right lateral flexion left lateral flexion, right rotation left rotation) between researcher 1 and researcher 2 using the body ROM measuring device.

II. SUBJECTS AND METHODS

2.1. Subjects, location and duration

- Duration: April 2024 to August 2024.
- Location: Hospital for Rehabilitation Professional Diseases, 313 Au Duong Lan street, Ward 2, District 8, Ho Chi Minh City.
 - Subject:

Inclusion criteria

- + Participants must be at least 18 years old, regardless of gender or occupation.
- + People who study, work and normal activities.
- + Participants voluntarily agree to participate in the study.

Exclusion criteria

- Study participants reported or complained of neck, shoulder and/or headache pain in 30 days before.
- + People with a history of neck and/or shoulder disorders, including injuries and fractures, a history of neurological and/or rheumatic disorders.

Healthy volunteer criteria:

Age: 18 years or older

No significant medical history: Free from any chronic or acute illnesses, including but not limited to:Cardiovascular diseases (e.g., heart failure, coronary artery disease);Respiratory diseases (e.g., asthma, COPD);Neurological disorders (e.g., epilepsy, multiple sclerosis);Endocrine disorders (e.g., diabetes, uncontrolled thyroid disease);Autoimmune diseases (e.g., rheumatoid arthritis, lupus);Cancer;Mental health disorders (e.g., severe depression, schizophrenia);Infectious diseases (e.g., HIV, hepatitis);Kidney or liver diseases

2.2. Methods

Research design

Cross-sectional study

Sample size

A prior sample size calculation is based on the methods of Walter et al. [7], assuming significance level $(\alpha) = 0.05$, type II error probability $(\beta) = 0.2$, confidence level Minimum acceptable reliability $(\rho 0) = 0.7$ and expected reliability $(\rho 1) = 0.9$, and n = 2; Anticipating a 10% sample loss, a sample size of 50 participants would be required.

pΩ					p1				
p0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
n = 2									
0	651.6	151.9	70.0	35.9	22.0	14.4	9.7	6.6	4.4
0.1		591-2	142.8	60.6	32.2	19·1	12.0	7.7	4.8
0.2			543.7	128-2	53.0	27.2	15.5	9.2	5.3
0.3				476-2	109.0	43.5	21.4	11.4	6.1
0.4					393-1	86.6	32.9	15·1	7.1
0.5						300.3	62.6	22.0	8.8
0.6							205.4	39·1	11.7
0.7								117·1	18·4
0.8					_				45·8

Variables

- Background variables:
- + Age: year of study minus year of birth;
- + Gender: Male/Female.
- Research variables:

	anabies.	
		Attaching a coordinate system Oxyz to
		The origin O is at the midpoint of the spinous process of the C7 vertebra.
	Ox: right-left axis	
		Oy: bottom-top axis
		Oz: back-front axis
		Identify the points to be measured:
		C: Vertex of the head (point of intersection between two lines: one line passing horizontally through the top of the ear and one line passing vertically through the center of the head).
		E: Vertex of the nose.
Range of	Quantitative	Convention for the measured variables
motion	variable	Researcher measures
(ROM)		ROM for flexion-extension (View from the side): EOy when bending forward and backward.
		ROM for lateral bending (View from behind): COy when bending left and right.
		ROM for rotation (View from above): EOz when rotating left and right.
		Measuring device
		ROM for flexion-extension (View from the side - Oyz plane): EOy when bending forward and backward.
		ROM for lateral bending (View from behind - Oxy plane): COy when bending left and right.
		ROM for rotation (View from above - Oxz plane): EOz when rotating left and right.

Measurement and data collection tools

- A goniometer used for measuring of joint range of motion has calibration certificate No. KT3-00481ADD4 on April 11, 2024.

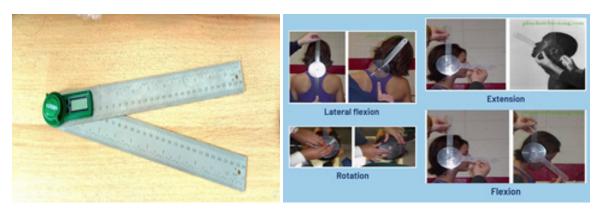


Figure 1. Goniometer

- ROMIX photogrammetric instrument has been standardized at the Ho Chi Minh City Quality Measurement Standards Technical Center under No. 0832TN22/TĐC – TN on October 28, 2023.

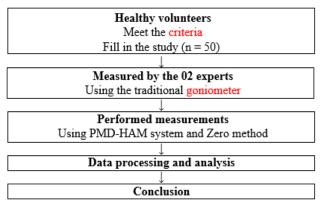



Figure 2. PMD- HAM systems Photometric Machine

The participants' cervical ROM were measured using the photometric machine.

All images from the machine and the results from the researchers were transferred to a computer for analysis.

Procedure

Statistical methods - data processing

Data collected was processed according to medical statistical algorithms of SPSS 25 software. Compare average ± standard deviation by using one-way ANOVA test.

2.3. Research ethics

- Research is only to evaluate and improve volunteers' health, not for any other purpose. Research participants volunteered to participate after the research process was clearly explained.
- Monitor and evaluate the condition of study participants after 1 month. If the volunteer develops any unpleasant health symptoms caused by the research methods of this study, the researcher will be responsible for consultation and treatment.
- When research participants show signs of not cooperating further or request to stop participating in the research, the research will be stopped.
- Evaluation of research participants' results is done objectively and honestly in data processing.

III. RESULTS

The mean of all six cervical movements from researcher 1, researcher 2 and the photogrammetry are depicted in Table 1. The results of measuring the Cervical ROM of all six cervical movements between researcher 1, researcher 2 and the Photogrammetry machine do not change statistically significantly (p > 0.05) (Table 2).

Table 1. Cervical range of motion from researcher 1 and PMD-HAM system

		Researcher 1			F	MD-HAM s	system
		Range (°)	Mean (°)	Standard deviation (°)	Range (°)	Mean (°)	Standard deviation (°)
Florion	Male	34-60	45.7	6.88	32-58	44.99	6.07
Flexion	Female	32-71	48.24	10.45	34-72	48.19	10.12
Extension	Male	31-43	35.76	4.03	29-43	34.32	4.46
	Female	29-49	37.74	6.01	31-48	38.13	5.27
Right lateral	Male	31-53	42.18	4.94	36-54	43.04	4.49
flexion	Female	34-50	42.06	5.03	32-55	44.11	5.23

		Researcher 1			F	PMD-HAM s	system
		Range (°)	Mean (°)	Standard deviation (°)	Range (°)	Mean (°)	Standard deviation (°)
Left lateral	Male	32-52	40.07	4.57	30-52	40,37	4.62
flexion	Female	34-53	43.23	5.74	33-53	42.62	5.04
Right	Male	55-84	74.02	6.18	56-85	74.16	6.44
rotation	Female	65-83	75.71	5.27	65-85	77.95	5.86
Left	Male	55-86	71.15	6.82	55-83	71.60	6.84
rotation	Female	63-84	72.71	5.16	64-84	74.98	5.45

Table 2. Cervical range of motion from researcher 2 and PMD-HAM system

			Researc	her 2	PMD-HAM system		
		Range	Mean	Standard	Range	Mean	Standard
		(°)	(°)	deviation (°)	(°)	(°)	deviation (°)
Flories	Male	33-60	45.86	7.02	32-58	44.99	6.07
Flexion	Female	34-72	47.04	9.67	34-72	48.19	10.12
Fortomalon	Male	30-44	35.1	3.92	29-43	34.32	4.46
Extension	Female	30-50	38.01	5.98	31-48	38.13	5.27
Right	Male	33-54	41.87	5.07	36-54	43.04	4.49
lateral flexion	Female	33-52	43.19	5.24	32-55	44.11	5.23
Left lateral	Male	30-49	40.12	4.19	30-52	40.37	4.62
flexion	Female	33-53	43.24	5.13	33-53	42.62	5.04
Right	Male	57-89	74.27	6.24	56-85	74.16	6.44
rotation	Female	63-91	74.37	6.98	65-85	77.95	5.86
Left	Male	53-86	70.25	7.30	55-83	71.60	6.84
rotation	Female	64-87	75.43	5.32	64-84	74.98	5.45

Table 3. Comparison of CROM between two researchers using One-Way Anova

Position	Researcher	р
Flexion	Researcher 1	0.782
riexion	Researcher 2	0.762
Extension	Researcher 1	0.795
Extension	Researcher 2	0.795
Right lateral flexion	Researcher 1	0.783
	Researcher 2	
Left lateral flexion	Researcher 1	0.715
Left lateral flexion	Researcher 2	
Dight rotation	Researcher 1	0.687
Right rotation	Researcher 2	0.007
Left rotation	Researcher 1	0.822
	Researcher 2	0.022

Table 4. Comparison of flexion and extension from PMD-HAM system using One-Way Anova

Position	CRO	р	
	Time 1	Time 2	0.776
Flexion	TITLE I	Time 3	0.812
	Time 2	Time 3	0.795

Position	CROM		р
Extension	Time 1	Time 2	0.787
	TITLE	Time 3	0.654
	Time 2	Time 3	0.834

Table 5. Comparison of right, left lateral flexion from PMD-HAM system using One-Way Anova

Position	CROM		р
	Time 1	Time 2	0.823
Right lateral flexion	Time 1	Time 3	0.706
	Time 2	Time 3	0.845
Left lateral flexion	Time 1	Time 2	0.876
	Time 1	Time 3	0.687
	Time 2	Time 3	0.833

Table 6. Comparison of right and left rotation from PMD-HAM system using One-Way Anova

Position	CR	р	
	Time 1	Time 2	0.745
Right rotation	Time i	Time 3	0.587
	Time 2	Time 3	0.712
	Time 1	Time 2	0.734
Left rotation	i iiiie i	Time 3	0.507
	Time 2	Time 3	0.737

IV. DISCUSSION

Our research was carried out on 50 healthy vonlunteers consisting of 24 males and 26 females, who were assessed the ROM on the six neck movements. ROM of neck flexion and extension measured by the two researchers and the machine are compatible to those in the research of Green and Heckman 1994 [7], which is 45° in flexion and 38° in extension. ROM of neck lateral flexion measured by the two researchers and the machine are compatible to those in the research of American Medical Association 1998 [9], which is 45° in the right and 38° in the left side. ROM of neck rotation measured by the two researchers and the machine are compatible to those in the research of Green and Heckman 1994 [7], which is 45° on both sides. We can see that in researches with different sample sizes, volunteers' statistics and geography, the ROM may vary between ages and sexes. Therefore, tools and equipment used in the research play an important role. The Zero method we use in the research has been approved by the American Plastic Surgery Conference and the Vancouver Conference in 1964 [11] since 1964

and the traditional goniometer in Ho Huu Luong's research [12], which have been standardized and highly reliable.

This study developed a novel photogrammetric method for the measurement of 3D ROM. The mean of range of this method was investigated by comparing it with the goniometer- based method. The One way – Anova analysis showed there was no significant difference between (p> 0.05) the new method and the goniometer based method for all six cervical movements. Besides, our method is relatively affordable for routine examinations. As for the traditional measurement tools like the goniometer, using these tools requires the assistance of an operator with relevant medical knowledge, and the operation of measuring and data reading is completely manual, which may introduce random error. Our method, on the contrary, can record and analyze the Cervical ROM regardless of the position and posture of the neck in 3D space, and the whole procedure is done automatically by program, which is more correct and reliable. In addition, our team is applying a sensor device that applies the Euler angle principle to the measurement method to further standardize the measuring machine, with the goal of optimizing the process of measuring the range of motion of the neck joint, applied in collecting biometric data as well as helping in the clinical practice of neck diseases.

V. CONCLUSION

The the performance of proposed photogrammetric method for the measurement of 3D CROM was deeply analyzed by comparison with other approaches, and results showed excellent consistency and reliability. This shows that the measurements, when repeated, are not biased parameters, and at the same time reliable when the operator performs operations according to standardized measurement procedures. Based on this technique, a Cervical ROM historical database could be set up to better check the changes of Cervical ROM. In the future work, a more diverse group of subjects including healthy and unhealthy people will be involved, and a more precise device will be used as a synchronous reference of the proposed method. In-depth research will also be conducted on pattern analysis of cervical motion curves, to consider its relevant wellness management applications in clinical and home applications.

REFERENCES

- **1. Hoy, D., March, L., Woolf, A., et al. (2014)**. The global burden of neck pain: estimates from the global burden of disease 2010 study. Annals of the Rheumatic Diseases, annrheumdis-2013-204431.
- **2. Hartley, R., & Zisserman, A. (2003).** Multiple view geometry in computer vision. Cambridge University Press.
- Gao, Z., Song, H., Ren, F., Li, Y., Wang, D., & He, X. (2017). Reliability and validity of CODA motion analysis system for measuring cervical range of motion in patients with cervical spondylosis and anterior cervical fusion. Experimental Therapeutic Medicine, 14(6), 5371-5378.

- 4. Inokuchi, H., Tojima, M., Mano, H., Ishikawa, Y., Ogata, N., & Haga, N. (2015). Neck range of motion measurements using a new three-dimensional motion analysis system: validity and repeatability. European Spine Journal, 24, 2807-2815.
- **5. Feng, M., Liang, L., Sun, W., et al. (2019).** Measurements of cervical range of motion using an optical motion capture system: Repeatability and validity. Experimental Therapeutic Medicine, 18(6), 4193-4202.
- 6. Ehtemam, F., Forbes, P. A., Schouten, A. C., van der Helm, F. C., & Happee, R. (2012). Galvanic vestibular stimulation elicits consistent head—neck motion in seated subjects. IEEE Transactions on Biomedical Engineering, 59(7), 1978-1984.
- **7. Greene, W. B., & Heckman, J. D. (1994).** The clinical measurement of joint motion. American Academy of Orthopaedic Surgeons.
- **8. Walter, B., & Green, M. (1994).** The Clinical Measurement of Joint Motion. American Academy of Orthopaedic Surgeons.
- **9. Disler, P. (2000).** The American Medical Association Guides to the Evaluation of Permanent Impairment 4th edition (3rd printing): some comments on Chapter 4: The Nervous System. PLAINTIFF, 42(42), 12-5.
- Walter, S. D., Eliasziw, M., & Donner, A. (1998). Sample size and optimal designs for reliability studies. Statistics in Medicine, 17(1), 101-110.
- 11. Malmström, E.-M., Karlberg, M., Fransson, P. A., Melander, A., & Magnusson, M. (2006). Primary and coupled cervical movements: the effect of age, gender, and body mass index. A 3-dimensional movement analysis of a population without symptoms of neck disorders. Spine, 31(2), E44-E50.
- 12. Hồ Hữu Lương. (2006). Degenerative Cervical Spine and Disc Herniation. Medical Publishing House.